Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 352
1.
Nat Commun ; 15(1): 3835, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714700

Aggregated forms of α-synuclein constitute the major component of Lewy bodies, the proteinaceous aggregates characteristic of Parkinson's disease. Emerging evidence suggests that α-synuclein aggregation may occur within liquid condensates formed through phase separation. This mechanism of aggregation creates new challenges and opportunities for drug discovery for Parkinson's disease, which is otherwise still incurable. Here we show that the condensation-driven aggregation pathway of α-synuclein can be inhibited using small molecules. We report that the aminosterol claramine stabilizes α-synuclein condensates and inhibits α-synuclein aggregation within the condensates both in vitro and in a Caenorhabditis elegans model of Parkinson's disease. By using a chemical kinetics approach, we show that the mechanism of action of claramine is to inhibit primary nucleation within the condensates. These results illustrate a possible therapeutic route based on the inhibition of protein aggregation within condensates, a phenomenon likely to be relevant in other neurodegenerative disorders.


Caenorhabditis elegans , Parkinson Disease , Protein Aggregates , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/chemistry , Caenorhabditis elegans/metabolism , Animals , Parkinson Disease/metabolism , Parkinson Disease/drug therapy , Humans , Protein Aggregates/drug effects , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/drug therapy , Disease Models, Animal , Lewy Bodies/metabolism , Kinetics
2.
Nat Commun ; 15(1): 3658, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38688913

Abberent protein-protein interactions potentiate many diseases and one example is the toxic, self-assembly of α-Synuclein in the dopaminergic neurons of patients with Parkinson's disease; therefore, a potential therapeutic strategy is the small molecule modulation of α-Synuclein aggregation. In this work, we develop an Oligopyridylamide based 2-dimensional Fragment-Assisted Structure-based Technique to identify antagonists of α-Synuclein aggregation. The technique utilizes a fragment-based screening of an extensive array of non-proteinogenic side chains in Oligopyridylamides, leading to the identification of NS132 as an antagonist of the multiple facets of α-Synuclein aggregation. We further identify a more cell permeable analog (NS163) without sacrificing activity. Oligopyridylamides rescue α-Synuclein aggregation mediated Parkinson's disease phenotypes in dopaminergic neurons in early and post disease Caenorhabditis elegans models. We forsee tremendous potential in our technique to identify lead therapeutics for Parkinson's disease and other diseases as it is expandable to other oligoamide scaffolds and a larger array of side chains.


Caenorhabditis elegans , Dopaminergic Neurons , Parkinson Disease , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Caenorhabditis elegans/metabolism , Parkinson Disease/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/pathology , Animals , Humans , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Phenotype , Protein Aggregates/drug effects , Disease Models, Animal , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/drug therapy , Pyridines/pharmacology , Pyridines/chemistry , Amides/pharmacology , Amides/chemistry
3.
ACS Chem Neurosci ; 15(9): 1770-1786, 2024 May 01.
Article En | MEDLINE | ID: mdl-38637513

Parkinson's disease arises from protein misfolding, aggregation, and fibrillation and is characterized by LB (Lewy body) deposits, which contain the protein α-synuclein (α-syn) as their major component. Another synuclein, γ-synuclein (γ-syn), coexists with α-syn in Lewy bodies and is also implicated in various types of cancers, especially breast cancer. It is known to seed α-syn fibrillation after its oxidation at methionine residue, thereby contributing in synucleinopathy. Despite its involvement in synucleinopathy, the search for small molecule inhibitors and modulators of γ-syn fibrillation remains largely unexplored. This work reveals the modulatory properties of cyclic-nordihydroguaiaretic acid (cNDGA), a natural polyphenol, on the structural and aggregational properties of human γ-syn employing various biophysical and structural tools, namely, thioflavin T (ThT) fluorescence, Rayleigh light scattering, 8-anilinonaphthalene-1-sulfonic acid binding, far-UV circular dichroism (CD), Fourier transform infrared spectroscopy (FTIR) spectroscopy, atomic force microscopy, ITC, molecular docking, and MTT-toxicity assay. cNDGA was observed to modulate the fibrillation of γ-syn to form off-pathway amorphous species that are nontoxic in nature at as low as 75 µM concentration. The modulation is dependent on oxidizing conditions, with cNDGA weakly interacting (Kd ∼10-5 M) with the residues at the N-terminal of γ-syn protein as investigated by isothermal titration calorimetry and molecular docking, respectively. Increasing cNDGA concentration results in an increased recovery of monomeric γ-syn as shown by sodium dodecyl sulfate and native-polyacrylamide gel electrophoresis. The retention of native structural properties of γ-syn in the presence of cNDGA was further confirmed by far-UV CD and FTIR. In addition, cNDGA is most effective in suppression of fibrillation when added at the beginning of the fibrillation kinetics and is also capable of disintegrating the preformed mature fibrils. These findings could, therefore, pave the ways for further exploring cNDGA as a potential therapeutic against γ-synucleinopathies.


Masoprocol , gamma-Synuclein , Humans , gamma-Synuclein/metabolism , Masoprocol/pharmacology , Protein Aggregates/drug effects , Protein Aggregates/physiology , Spectroscopy, Fourier Transform Infrared , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/drug therapy
4.
Int J Biol Macromol ; 267(Pt 2): 131423, 2024 May.
Article En | MEDLINE | ID: mdl-38583832

This article reveals the binding mechanism between glycyrrhizic acid (GA) and α-synuclein to may provide further information for the modulation of synucleinopathies using bioactive compounds. Therefore, the inhibitory activities of GA against α-synuclein aggregation and induced neurotoxicity were evaluated using different assays. Results showed that α-synuclein-GA binding was mediated by intermolecular hydrogen bonds leading to the formation of a slightly folded complex. Theoretical studies revealed that GA binds to the N-terminal domain of α-synuclein and triggers a compact structure around a major part of the N-terminal and the NAC regions along with fluctuations in the C-terminal domain, which are prerequisites for the inhibition of α-synuclein aggregation. Then, the cellular assays showed that GA as a potential small molecule can inhibit the oligomerization of α-synuclein and relevant neurotoxicity through modulation of neural viability, membrane leakage, and ROS formation in a concentration-dependent manner. As a result, the primary mechanism of GA's anti-aggregation and neuroprotective activities is the reorganized α-synuclein structure and fluctuating C-terminal domain, which promotes long-range transient intramolecular contacts between the N-terminal and the C-terminal domain.


Glycyrrhizic Acid , Protein Aggregates , Synucleinopathies , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , alpha-Synuclein/chemistry , Cell Survival/drug effects , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/chemistry , Hydrogen Bonding , Molecular Docking Simulation , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Protein Aggregates/drug effects , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/drug therapy , Protein Binding , Reactive Oxygen Species/metabolism , Synucleinopathies/metabolism , Synucleinopathies/pathology
5.
J Biomol Struct Dyn ; 42(1): 483-494, 2024.
Article En | MEDLINE | ID: mdl-36961221

Parkinson's disorder (PD) exacerbates neuronal degeneration of motor nerves, thereby effectuating uncoordinated movements and tremors. Aberrant alpha-synuclein (α-syn) is culpable of triggering PD, wherein cytotoxic amyloid aggregates of α-syn get deposited in motor neurons to instigate neuro-degeneration. Amyloid aggregates, typically rich in beta sheets are cardinal targets to mitigate their neurotoxic effects. In this analysis, owing to their interaction specificity, we formulated an efficacious tripeptide out of the aggregation-prone region of α-syn protein. With the help of a proficient computational pipeline, systematic peptide shortening and an adept molecular simulation platform, we formulated a tripeptide, VAV from α-syn structure based hexapeptide KISVRV. Indeed, the VAV tripeptide was able to effectively mitigate the α-syn amyloid fibrils' dynamic rate of beta-sheet formation. Additional trajectory analyses of the VAV- α-syn complex indicated that, upon its dynamic interaction, VAV efficiently altered the distinct pathogenic structural dynamics of α-syn, further advocating its potential in alleviating aberrant α-syn's amyloidogenic proclivities. Consistent findings from various computational analyses have led us to surmise that VAV could potentially re-alter the pathogenic conformational orientation of α-syn, essential to mitigate its cytotoxicity. Hence, VAV tripeptide could be an efficacious therapeutic candidate to efficiently ameliorate aberrant α-syn amyloid mediated neurotoxicity, eventually attenuating the nocuous effects of PD.Communicated by Ramaswamy H. Sarma.


Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/chemistry , Parkinson Disease/metabolism , Protein Aggregates , Protein Aggregation, Pathological/drug therapy , Amyloid/chemistry , Computers
6.
J Biol Chem ; 298(10): 102417, 2022 10.
Article En | MEDLINE | ID: mdl-36037967

Γ-Crystallins play a major role in age-related lens transparency. Their destabilization by mutations and physical chemical insults are associated with cataract formation. Therefore, drugs that increase their stability should have anticataract properties. To this end, we screened 2560 Federal Drug Agency-approved drugs and natural compounds for their ability to suppress or worsen H2O2 and/or heat-mediated aggregation of bovine γ-crystallins. The top two drugs, closantel (C), an antihelminthic drug, and gambogic acid (G), a xanthonoid, attenuated thermal-induced protein unfolding and aggregation as shown by turbidimetry fluorescence spectroscopy dynamic light scattering and electron microscopy of human or mouse recombinant crystallins. Furthermore, binding studies using fluorescence inhibition and hydrophobic pocket-binding molecule bis-8-anilino-1-naphthalene sulfonic acid revealed static binding of C and G to hydrophobic sites with medium-to-low affinity. Molecular docking to HγD and other γ-crystallins revealed two binding sites, one in the "NC pocket" (residues 50-150) of HγD and one spanning the "NC tail" (residues 56-61 to 168-174 in the C-terminal domain). Multiple binding sites overlap with those of the protective mini αA-crystallin chaperone MAC peptide. Mechanistic studies using bis-8-anilino-1-naphthalene sulfonic acid as a proxy drug showed that it bound to MAC sites, improved Tm of both H2O2 oxidized and native human gamma D, and suppressed turbidity of oxidized HγD, most likely by trapping exposed hydrophobic sites. The extent to which these drugs act as α-crystallin mimetics and reduce cataract progression remains to be demonstrated. This study provides initial insights into binding properties of C and G to γ-crystallins.


Biomimetic Materials , Cataract , Lens, Crystalline , Molecular Chaperones , Protein Aggregation, Pathological , Salicylanilides , Xanthones , alpha-Crystallins , gamma-Crystallins , Animals , Cattle , Humans , Mice , alpha-Crystallins/metabolism , Cataract/drug therapy , Cataract/prevention & control , Cataract/genetics , gamma-Crystallins/metabolism , Hydrogen Peroxide/metabolism , Lens, Crystalline/metabolism , Molecular Chaperones/metabolism , Molecular Docking Simulation , Naphthalenes/metabolism , Sulfonic Acids/metabolism , Salicylanilides/chemistry , Salicylanilides/pharmacology , Salicylanilides/therapeutic use , Xanthones/chemistry , Xanthones/pharmacology , Xanthones/therapeutic use , Protein Aggregation, Pathological/drug therapy , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Biomimetic Materials/therapeutic use
7.
Proc Natl Acad Sci U S A ; 119(34): e2206240119, 2022 08 23.
Article En | MEDLINE | ID: mdl-35969734

Neurodegenerative diseases are characterized by the pathologic accumulation of aggregated proteins. Known as amyloid, these fibrillar aggregates include proteins such as tau and amyloid-ß (Aß) in Alzheimer's disease (AD) and alpha-synuclein (αSyn) in Parkinson's disease (PD). The development and spread of amyloid fibrils within the brain correlates with disease onset and progression, and inhibiting amyloid formation is a possible route toward therapeutic development. Recent advances have enabled the determination of amyloid fibril structures to atomic-level resolution, improving the possibility of structure-based inhibitor design. In this work, we use these amyloid structures to design inhibitors that bind to the ends of fibrils, "capping" them so as to prevent further growth. Using de novo protein design, we develop a library of miniprotein inhibitors of 35 to 48 residues that target the amyloid structures of tau, Aß, and αSyn. Biophysical characterization of top in silico designed inhibitors shows they form stable folds, have no sequence similarity to naturally occurring proteins, and specifically prevent the aggregation of their targeted amyloid-prone proteins in vitro. The inhibitors also prevent the seeded aggregation and toxicity of fibrils in cells. In vivo evaluation reveals their ability to reduce aggregation and rescue motor deficits in Caenorhabditis elegans models of PD and AD.


Amyloid beta-Peptides/antagonists & inhibitors , Protein Aggregation, Pathological/drug therapy , alpha-Synuclein/antagonists & inhibitors , tau Proteins/antagonists & inhibitors , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid/chemistry , Amyloid beta-Peptides/metabolism , Amyloidosis , Humans , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Protein Aggregation, Pathological/metabolism , alpha-Synuclein/metabolism , tau Proteins/chemistry
8.
J Biol Chem ; 298(5): 101902, 2022 05.
Article En | MEDLINE | ID: mdl-35390347

Parkinson's disease is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra, as well as the accumulation of intraneuronal proteinaceous inclusions known as Lewy bodies and Lewy neurites. The major protein component of Lewy inclusions is the intrinsically disordered protein α-synuclein (α-Syn), which can adopt diverse amyloid structures. Different conformational strains of α-Syn have been proposed to be related to the onset of distinct synucleinopathies; however, how specific amyloid fibrils cause distinctive pathological traits is not clear. Here, we generated three different α-Syn amyloid conformations at different pH and salt concentrations and analyzed the activity of SynuClean-D (SC-D), a small aromatic molecule, on these strains. We show that incubation of α-Syn with SC-D reduced the formation of aggregates and the seeded polymerization of α-Syn in all cases. Moreover, we found that SC-D exhibited a general fibril disaggregation activity. Finally, we demonstrate that treatment with SC-D also reduced strain-specific intracellular accumulation of phosphorylated α-Syn inclusions. Taken together, we conclude that SC-D may be a promising hit compound to inhibit polymorphic α-Syn aggregation.


Neuroprotective Agents/pharmacology , Parkinson Disease , Pyridines/pharmacology , alpha-Synuclein , Amyloid/metabolism , Humans , Lewy Bodies/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Polymerization , Protein Aggregation, Pathological/drug therapy , Synucleinopathies/drug therapy , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism
9.
Int J Biol Macromol ; 195: 565-588, 2022 Jan 15.
Article En | MEDLINE | ID: mdl-34920073

Non-enzymatic reaction involving carbonyl of reducing sugars and amino groups in proteins produces advanced glycation end products (AGEs). AGE accumulation in vivo is a crucial factor in the progression of metabolic and pathophysiological mechanisms like obesity, diabetes, coronary artery disease, neurological disorders, and chronic renal failure. The body's own defense mechanism, synthetic inhibitors, and natural inhibitors can all help to prevent the glycation of proteins. Synthetic inhibitors have the potential to suppress the glycation of proteins through a variety of pathways. They could avoid Amadori product development by tampering with the addition of sugars to the proteins. Besides which, the free radical scavenging and blocking crosslink formation could be another mechanism behind their anti-glycation properties. In comparison with synthetic substances, naturally occurring plant products have been found to be comparatively non-toxic, cheap, and usable in an ingestible form. This review gives a brief introduction of the Maillard reaction; formation, characterization and pathology related to AGEs, potential therapeutic approaches against glycation, natural and synthetic inhibitors of glycation and their probable mechanism of action. The scientific community could get benefit from the combined knowledge about important molecules, which will further guide to the design and development of new pharmaceutical compounds.


Glycosylation/drug effects , Proteins/metabolism , Animals , Biological Products/chemistry , Biological Products/pharmacology , Biological Products/therapeutic use , Diabetes Complications , Diabetes Mellitus/metabolism , Disease Management , Disease Susceptibility , Glycation End Products, Advanced/chemistry , Glycation End Products, Advanced/metabolism , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Protein Aggregates/drug effects , Protein Aggregation, Pathological/drug therapy , Protein Binding/drug effects , Protein Processing, Post-Translational/drug effects , Protein Stability/drug effects , Proteins/chemistry , Structure-Activity Relationship
10.
Cells ; 10(12)2021 12 13.
Article En | MEDLINE | ID: mdl-34944028

A hallmark of Alzheimer's disease (AD) is the accumulation of tau protein in the brain. Compelling evidence indicates that the presence of tau aggregates causes irreversible neuronal destruction, eventually leading to synaptic loss. So far, the inhibition of tau aggregation has been recognized as one of the most effective therapeutic strategies. Cannabidiol (CBD), a major component found in Cannabis sativa L., has antioxidant activities as well as numerous neuroprotective features. Therefore, we hypothesize that CBD may serve as a potent substance to hamper tau aggregation in AD. In this study, we aim to investigate the CBD effect on the aggregation of recombinant human tau protein 1N/4R isoform using biochemical methods in vitro and in silico. Using Thioflavin T (ThT) assay, circular dichroism (CD), and atomic force microscopy (AFM), we demonstrated that CBD can suppress tau fibrils formation. Moreover, by quenching assay, docking, and job's plot, we further demonstrated that one molecule of CBD interacts with one molecule of tau protein through a spontaneous binding. Experiments performed by quenching assay, docking, and Thioflavin T assay further established that the main forces are hydrogen Van der Waals and some non-negligible hydrophobic forces, affecting the lag phase of tau protein kinetics. Taken together, this study provides new insights about a natural substance, CBD, for tau therapy which may offer new hope for the treatment of AD.


Alzheimer Disease/drug therapy , Cannabidiol/pharmacology , Neurons/drug effects , Protein Aggregation, Pathological/drug therapy , tau Proteins/genetics , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Benzothiazoles/metabolism , Brain/drug effects , Brain/metabolism , Brain/pathology , Cannabidiol/chemistry , Humans , Kinetics , Microscopy, Atomic Force , Neurons/metabolism , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/pathology , Protein Isoforms/drug effects , Protein Isoforms/genetics , tau Proteins/antagonists & inhibitors , tau Proteins/ultrastructure
11.
Sci Rep ; 11(1): 23796, 2021 12 10.
Article En | MEDLINE | ID: mdl-34893659

Alzheimer's disease (AD), one type of dementia, is a complex disease affecting people globally with limited drug treatment. Thus, natural products are currently of interest as promising candidates because of their cost-effectiveness and multi-target abilities. Diplazium esculentum (Retz.) Sw., an edible fern, inhibited acetylcholinesterase in vitro, inferring that it might be a promising candidate for AD treatment by supporting cholinergic neurons. However, evidence demonstrating anti-AD properties of this edible plant via inhibiting of neurotoxic peptides production, amyloid beta (Aß), both in vitro and in vivo is lacking. Thus, the anti-AD properties of D. esculentum extract both in vitro and in Drosophila models of Aß-mediated toxicity were elucidated. Findings showed that an ethanolic extract exhibited high phenolics and flavonoids, contributing to antioxidant and inhibitory activities against AD-related enzymes. Notably, the extract acted as a BACE-1 blocker and reduced amyloid beta 42 (Aß42) peptides in Drosophila models, resulting in improved locomotor behaviors. Information gained from this study suggested that D. esculentum showed potential for AD amelioration and prevention. Further investigations in vertebrates or humans are required to determine the effective doses of D. esculentum against AD, particularly via amyloidogenic pathway.


Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Ferns/chemistry , Plant Extracts/pharmacology , Protein Aggregation, Pathological/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/etiology , Alzheimer Disease/pathology , Animals , Antioxidants/chemistry , Antioxidants/pharmacology , Behavior, Animal , Biological Products , Biomarkers , Disease Models, Animal , Drosophila , Gene Expression , Humans , Peptide Fragments/metabolism , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry , Protein Aggregates/drug effects , Protein Aggregation, Pathological/drug therapy
12.
Gut Microbes ; 13(1): 1996848, 2021.
Article En | MEDLINE | ID: mdl-34812107

Amyotrophic Lateral Sclerosis is a neuromuscular disease characterized by the progressive death of motor neurons and muscle atrophy. The gastrointestinal symptoms in ALS patients were largely ignored or underestimated. The relationship between the enteric neuromuscular system and microbiome in ALS progression is unknown. We performed longitudinal studies on the enteric neuron system (ENS) and microbiome in the ALS human-SOD1G93A (Superoxide Dismutase 1) transgenic mice. We treated age-matched wild-type and ALS mice with butyrate or antibiotics to investigate the microbiome and neuromuscular functions. We examined intestinal mobility, microbiome, an ENS marker GFAP (Glial Fibrillary Acidic Protein), a smooth muscle marker (SMMHC, Smooth Muscle Myosin Heavy Chain), and human colonoids. The distribution of human-G93A-SOD1 protein was tested as an indicator of ALS progression. At 2-month-old before ALS onset, SOD1G93A mice had significantly lower intestinal mobility, decreased grip strength, and reduced time in the rotarod. We observed increased GFAP and decreased SMMHC expression. These changes correlated with consistent increased aggregation of mutated SOD1G93A in the colon, small intestine, and spinal cord. Butyrate or antibiotics treated SOD1G93A mice had a significantly longer latency to fall in the rotarod test, reduced SOD1G93A aggregation, and enhanced enteric neuromuscular function. Feces from 2-month-old SOD1G93A mice significantly enhanced SOD1G93A aggregation in human colonoids transfected with a SOD1G93A-GFP plasmid. Longitudinal studies of microbiome data further showed the altered bacterial community related to autoimmunity (e.g., Clostridium sp. ASF502, Lachnospiraceae bacterium A4), inflammation (e.g., Enterohabdus Muris,), and metabolism (e.g., Desulfovibrio fairfieldensis) at 1- and 2-month-old SOD1G93A mice, suggesting the early microbial contribution to the pathological changes. We have demonstrated a novel link between the microbiome, hSOD1G93A aggregation, and intestinal mobility. Dysbiosis occurred at the early stage of the ALS mice before observed mutated-SOD1 aggregation and dysfunction of ENS. Manipulating the microbiome improves the muscle performance of SOD1G93A mice. We provide insights into the fundamentals of intestinal neuromuscular function and microbiome in ALS.


Amyotrophic Lateral Sclerosis/microbiology , Dysbiosis/microbiology , Enteric Nervous System/physiopathology , Muscle, Smooth/physiopathology , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/physiopathology , Animals , Anti-Bacterial Agents/therapeutic use , Butyrates/therapeutic use , Disease Models, Animal , Dysbiosis/drug therapy , Dysbiosis/physiopathology , Enteric Nervous System/drug effects , Enteric Nervous System/metabolism , Gastrointestinal Microbiome/drug effects , Gastrointestinal Motility/drug effects , Humans , Intestine, Small/innervation , Intestine, Small/metabolism , Intestine, Small/pathology , Intestine, Small/physiopathology , Longitudinal Studies , Mice , Mice, Transgenic , Muscle Strength/drug effects , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Protein Aggregation, Pathological/drug therapy , Protein Aggregation, Pathological/microbiology , Protein Aggregation, Pathological/physiopathology , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
13.
Int J Mol Sci ; 22(22)2021 Nov 19.
Article En | MEDLINE | ID: mdl-34830391

Parkinson's disease (PD) is the second most common neurodegenerative disorder. An important hallmark of PD involves the pathological aggregation of proteins in structures known as Lewy bodies. The major component of these proteinaceous inclusions is alpha (α)-synuclein. In different conditions, α-synuclein can assume conformations rich in either α-helix or ß-sheets. The mechanisms of α-synuclein misfolding, aggregation, and fibrillation remain unknown, but it is thought that ß-sheet conformation of α-synuclein is responsible for its associated toxic mechanisms. To gain fundamental insights into the process of α-synuclein misfolding and aggregation, the secondary structure of this protein in the presence of charged and non-charged surfactant solutions was characterized. The selected surfactants were (anionic) sodium dodecyl sulphate (SDS), (cationic) cetyltrimethylammonium chloride (CTAC), and (uncharged) octyl ß-D-glucopyranoside (OG). The effect of surfactants in α-synuclein misfolding was assessed by ultra-structural analyses, in vitro aggregation assays, and secondary structure analyses. The α-synuclein aggregation in the presence of negatively charged SDS suggests that SDS-monomer complexes stimulate the aggregation process. A reduction in the electrostatic repulsion between N- and C-terminal and in the hydrophobic interactions between the NAC (non-amyloid beta component) region and the C-terminal seems to be important to undergo aggregation. Fourier transform infrared spectroscopy (FTIR) measurements show that ß-sheet structures comprise the assembly of the fibrils.


Neurodegenerative Diseases/drug therapy , Parkinson Disease/drug therapy , Protein Aggregation, Pathological/drug therapy , alpha-Synuclein/genetics , Amyloid/antagonists & inhibitors , Amyloid/genetics , Cetrimonium/pharmacology , Circular Dichroism , Galactosides/pharmacology , Humans , Lewy Bodies/drug effects , Lewy Bodies/ultrastructure , Neurodegenerative Diseases/pathology , Parkinson Disease/genetics , Parkinson Disease/pathology , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/pathology , Protein Conformation , Protein Conformation, beta-Strand/genetics , Protein Folding/drug effects , Protein Structure, Secondary/drug effects , Sodium Dodecyl Sulfate/pharmacology , Spectroscopy, Fourier Transform Infrared , alpha-Synuclein/antagonists & inhibitors
14.
PLoS Genet ; 17(11): e1009911, 2021 11.
Article En | MEDLINE | ID: mdl-34780474

The capacity of a cell to maintain proteostasis progressively declines during aging. Virtually all age-associated neurodegenerative disorders associated with aggregation of neurotoxic proteins are linked to defects in the cellular proteostasis network, including insufficient lysosomal hydrolysis. Here, we report that proteotoxicity in yeast and Drosophila models for Parkinson's disease can be prevented by increasing the bioavailability of Ca2+, which adjusts intracellular Ca2+ handling and boosts lysosomal proteolysis. Heterologous expression of human α-synuclein (αSyn), a protein critically linked to Parkinson's disease, selectively increases total cellular Ca2+ content, while the levels of manganese and iron remain unchanged. Disrupted Ca2+ homeostasis results in inhibition of the lysosomal protease cathepsin D and triggers premature cellular and organismal death. External administration of Ca2+ reduces αSyn oligomerization, stimulates cathepsin D activity and in consequence restores survival, which critically depends on the Ca2+/calmodulin-dependent phosphatase calcineurin. In flies, increasing the availability of Ca2+ discloses a neuroprotective role of αSyn upon manganese overload. In sum, we establish a molecular interplay between cathepsin D and calcineurin that can be activated by Ca2+ administration to counteract αSyn proteotoxicity.


Calcineurin/genetics , Cathepsin D/genetics , Parkinson Disease/genetics , alpha-Synuclein/genetics , Aging/drug effects , Aging/genetics , Animals , Animals, Genetically Modified/genetics , Calcium/metabolism , Calcium/pharmacology , Cell Death/genetics , Drosophila melanogaster/genetics , Gene Expression Regulation/drug effects , Humans , Lysosomes/drug effects , Lysosomes/genetics , Neurons/drug effects , Parkinson Disease/metabolism , Parkinson Disease/pathology , Protein Aggregation, Pathological/drug therapy , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/pathology , Proteolysis/drug effects , Saccharomyces cerevisiae/genetics
15.
Brain ; 144(9): 2745-2758, 2021 10 22.
Article En | MEDLINE | ID: mdl-34687213

Human prion diseases are fatal neurodegenerative disorders that include sporadic, infectious and genetic forms. Inherited Creutzfeldt-Jakob disease due to the E200K mutation of the prion protein-coding gene is the most common form of genetic prion disease. The phenotype resembles that of sporadic Creutzfeldt-Jakob disease at both the clinical and pathological levels, with a median disease duration of 4 months. To date, there is no available treatment for delaying the occurrence or slowing the progression of human prion diseases. Existing in vivo models do not allow high-throughput approaches that may facilitate the discovery of compounds targeting pathological assemblies of human prion protein or their effects on neuronal survival. Here, we generated a genetic model in the nematode Caenorhabditis elegans, which is devoid of any homologue of the prion protein, by expressing human prion protein with the E200K mutation in the mechanosensitive neuronal system. Expression of E200K prion protein induced a specific behavioural pattern and neurodegeneration of green fluorescent protein-expressing mechanosensitive neurons, in addition to the formation of intraneuronal inclusions associated with the accumulation of a protease-resistant form of the prion protein. We demonstrated that this experimental system is a powerful tool for investigating the efficacy of anti-prion compounds on both prion-induced neurodegeneration and prion protein misfolding, as well as in the context of human prion protein. Within a library of 320 compounds that have been approved for human use and cross the blood-brain barrier, we identified five molecules that were active against the aggregation of the E200K prion protein and the neurodegeneration it induced in transgenic animals. This model breaks a technological limitation in prion therapeutic research and provides a key tool to study the deleterious effects of misfolded prion protein in a well-described neuronal system.


Caenorhabditis elegans Proteins/genetics , Disease Models, Animal , Prion Diseases/genetics , Prion Proteins/genetics , Tubulin/genetics , Animals , Animals, Genetically Modified , Benzocaine/administration & dosage , Benzocaine/analogs & derivatives , Brain/drug effects , Brain/metabolism , Brain/pathology , Caenorhabditis elegans , Humans , Naloxone/administration & dosage , Piroxicam/administration & dosage , Piroxicam/analogs & derivatives , Prion Diseases/drug therapy , Prion Diseases/metabolism , Prion Proteins/metabolism , Protein Aggregation, Pathological/drug therapy , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism
16.
Biol Futur ; 72(3): 367-372, 2021 Sep.
Article En | MEDLINE | ID: mdl-34554557

The extracts of 7 herbs were screened and compared for their functional ability to inhibit the aggregation of trypsin as an appropriate model protein for in vitro fibrillation in aqueous ethanol at pH 7.0. Turbidity measurements, total phenolic content determination, aggregation kinetics, Congo red binding assay as well as transmission electron microscopy were used to analyse the inhibition of amyloid fibril formation. This correlated with the total phenolic content of the herb extracts. The peppermint extract proved to be the most potent anti-amyloidogenic agent. Results showed that the peppermint extract exerted dose-dependent inhibitory effect on trypsin fibril formation.


Plant Oils/pharmacology , Protein Aggregates/drug effects , Protein Aggregation, Pathological/drug therapy , Mentha piperita/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Oils/metabolism
17.
J Cell Mol Med ; 25(20): 9634-9646, 2021 10.
Article En | MEDLINE | ID: mdl-34486218

Multiple system atrophy (MSA) is a fatal neurodegenerative disease where the histopathological hallmark is glial cytoplasmic inclusions in oligodendrocytes, rich of aggregated alpha-synuclein (aSyn). Therefore, therapies targeting aSyn aggregation and toxicity have been studied as a possible disease-modifying therapy for MSA. Our earlier studies show that inhibition of prolyl oligopeptidase (PREP) with KYP-2047 reduces aSyn aggregates in several models. Here, we tested the effects of KYP-2047 on a MSA cellular models, using rat OLN-AS7 and human MO3.13 oligodendrocyte cells. As translocation of p25α to cell cytosol has been identified as an inducer of aSyn aggregation in MSA models, the cells were transiently transfected with p25α. Similar to earlier studies, p25α increased aSyn phosphorylation and aggregation, and caused tubulin retraction and impaired autophagy in OLN-AS7 cells. In both cellular models, p25α transfection increased significantly aSyn mRNA levels and also increased the levels of inactive protein phosphatase 2A (PP2A). However, aSyn or p25α did not cause any cellular death in MO3.13 cells, questioning their use as a MSA model. Simultaneous administration of 10 µM KYP-2047 improved cell viability, decreased insoluble phosphorylated aSyn and normalized autophagy in OLN-AS7 cells but similar impact was not seen in MO3.13 cells.


Multiple System Atrophy/metabolism , Multiple System Atrophy/pathology , Prolyl Oligopeptidases/antagonists & inhibitors , Protein Aggregates/drug effects , Protein Aggregation, Pathological/metabolism , alpha-Synuclein/metabolism , Cell Line , Cell Survival , Humans , Multiple System Atrophy/drug therapy , Multiple System Atrophy/etiology , Nerve Tissue Proteins/metabolism , Oligodendroglia/metabolism , Oligodendroglia/pathology , Phosphorylation , Protein Aggregation, Pathological/drug therapy
18.
Sci Rep ; 11(1): 19262, 2021 09 28.
Article En | MEDLINE | ID: mdl-34584131

Amyloid ß (Aß) peptide aggregation plays a central role in Alzheimer's disease (AD) etiology. AD drug candidates have included small molecules or peptides directed towards inhibition of Aß fibrillogenesis. Although some Aß-derived peptide fragments suppress Aß fibril growth, comprehensive analysis of inhibitory potencies of peptide fragments along the whole Aß sequence has not been reported. The aim of this work is (a) to identify the region(s) of Aß with highest propensities for aggregation and (b) to use those fragments to inhibit Aß fibrillogenesis. Structural and aggregation properties of the parent Aß1-42 peptide and seven overlapping peptide fragments have been studied, i.e. Aß1-10 (P1), Aß6-15 (P2), Aß11-20 (P3), Aß16-25 (P4), Aß21-30 (P5), Aß26-36 (P6), and Aß31-42 (P7). Structural transitions of the peptides in aqueous buffer have been monitored by circular dichroism and Fourier transform infrared spectroscopy. Aggregation and fibrillogenesis were analyzed by light scattering and thioflavin-T fluorescence. The mode of peptide-peptide interactions was characterized by fluorescence resonance energy transfer. Three peptide fragments, P3, P6, and P7, exhibited exceptionally high propensity for ß-sheet formation and aggregation. Remarkably, only P3 and P6 exerted strong inhibitory effect on the aggregation of Aß1-42, whereas P7 and P2 displayed moderate inhibitory potency. It is proposed that P3 and P6 intercalate between Aß1-42 molecules and thereby inhibit Aß1-42 aggregation. These findings may facilitate therapeutic strategies of inhibition of Aß fibrillogenesis by Aß-derived peptides.


Alzheimer Disease/drug therapy , Amyloid beta-Peptides/antagonists & inhibitors , Peptide Fragments/pharmacology , Protein Aggregation, Pathological/drug therapy , Alzheimer Disease/pathology , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/ultrastructure , Circular Dichroism , Humans , Peptide Fragments/therapeutic use , Peptide Fragments/ultrastructure , Protein Aggregation, Pathological/pathology
19.
Neurobiol Dis ; 160: 105515, 2021 12.
Article En | MEDLINE | ID: mdl-34571136

Brain inclusions mainly composed of misfolded and aggregated TAR DNA binding protein 43 (TDP-43), are characteristic hallmarks of amyotrophic lateral sclerosis (ALS). Irrespective of the role played by the inclusions, their reduction represents an important therapeutic pathway that is worth exploring. Their removal can either lead to the recovery of TDP-43 function by removing the self-templating conformers that sequester the protein in the inclusions, and/or eliminate any potential intrinsic toxicity of the aggregates. The search for curative therapies has been hampered by the lack of ALS models for use in high-throughput screening. We adapted, optimised, and extensively characterised our previous ALS cellular model for such use. The model demonstrated efficient aggregation of endogenous TDP-43, and concomitant loss of its splicing regulation function. We provided a proof-of-principle for its eventual use in high-throughput screening using compounds of the tricyclic family and showed that recovery of TDP-43 function can be achieved by the enhanced removal of TDP-43 aggregates by these compounds. We observed that the degradation of the aggregates occurs independent of the autophagy pathway beyond autophagosome-lysosome fusion, but requires a functional proteasome pathway. The in vivo translational effect of the cellular model was tested with two of these compounds in a Drosophila model expressing a construct analogous to the cellular model, where thioridazine significantly improved the locomotive defect. Our findings have important implications as thioridazine cleared TDP-43 aggregates and recovered TDP-43 functionality. This study also highlights the importance of a two-stage, in vitro and in vivo model system to cross-check the search for small molecules that can clear TDP-43 aggregates in TDP-43 proteinopathies.


Amyotrophic Lateral Sclerosis/drug therapy , DNA-Binding Proteins/metabolism , Dopamine Antagonists/therapeutic use , Drosophila Proteins/metabolism , Protein Aggregation, Pathological/drug therapy , Thioridazine/therapeutic use , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Autophagy/drug effects , Cell Line , Disease Models, Animal , Dopamine Antagonists/pharmacology , Drosophila , Humans , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology , Thioridazine/pharmacology
20.
Int J Mol Sci ; 22(11)2021 Jun 02.
Article En | MEDLINE | ID: mdl-34199427

The interplay between α-synuclein and dopamine derivatives is associated with oxidative stress-dependent neurodegeneration in Parkinson's disease (PD). The formation in the dopaminergic neurons of intraneuronal inclusions containing aggregates of α-synuclein is a typical hallmark of PD. Even though the biochemical events underlying the aberrant aggregation of α-synuclein are not completely understood, strong evidence correlates this process with the levels of dopamine metabolites. In vitro, 3,4-dihydroxyphenylacetaldehyde (DOPAL) and the other two metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and 3,4-dihydroxyphenylethanol (DOPET), share the property to inhibit the growth of mature amyloid fibrils of α-synuclein. Although this effect occurs with the formation of differently toxic products, the molecular basis of this inhibition is still unclear. Here, we provide information on the effect of DOPAC on the aggregation properties of α-synuclein and its ability to interact with membranes. DOPAC inhibits α-synuclein aggregation, stabilizing monomer and inducing the formation of dimers and trimers. DOPAC-induced oligomers did not undergo conformational transition in the presence of membranes, and penetrated the cell, where they triggered autophagic processes. Cellular assays showed that DOPAC reduced cytotoxicity and ROS production induced by α-synuclein aggregates. Our findings show that the early radicals resulting from DOPAC autoxidation produced covalent modifications of the protein, which were not by themselves a primary cause of either fibrillation or membrane binding inhibition. These findings are discussed in the light of the potential mechanism of DOPAC protection against the toxicity of α-synuclein aggregates to better understand protein and catecholamine biology and to eventually suggest a scaffold that can help in the design of candidate molecules able to interfere in α-synuclein aggregation.


Cell Proliferation/drug effects , Parkinson Disease/genetics , Protein Aggregation, Pathological/genetics , alpha-Synuclein/genetics , 3,4-Dihydroxyphenylacetic Acid/analogs & derivatives , 3,4-Dihydroxyphenylacetic Acid/pharmacology , Amyloid/drug effects , Amyloid/genetics , Dopamine/genetics , Dopamine/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Humans , Oxidative Stress/drug effects , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/pathology , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/pharmacology , Protein Aggregation, Pathological/drug therapy , Protein Multimerization/genetics , alpha-Synuclein/antagonists & inhibitors
...